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Abstract 

Reaction of p-fluoro-~-methylstyrene with [(~-CsHs)Co('q-C6Me6)] leads to the cluster complex [{(7/-CsHs)Co}3(p~3-T/2:~2:~2-p- 
fluoro-a-methylstyrene)] lb. Nucleophilic substitution of fluoride by H- or Ph- takes place when lb is treated with LiHBEt 3 or PhLi. 
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1. Introduct ion 

The reactivity of arene ligands in mononuclear transi- 
tion metal complexes has been studied in considerable 
detail [2]. It is well known that the chemical properties 
of a metal coordinated arene nucleus (and also of its 
substitutents) are substantially different from those of 
the free ligand. A chemically very useful application 
has been the strong activation of benzene towards nu- 
cleophilic attack by the chromium tricarbonyl moiety 
[3]. In contrast to mononuclear systems, only little is 
known about the reactions of arenes which are coordi- 
nated to a metal cluster [4,5]. The few studies in this 
area show that benzene also reacts as an electrophile 
when coordinated to a metal carbonyl cluster in the 
terminal (r/6) or face-capping (/x3-r/2:r/2:r/2) bonding 
mode. For example, carbanions (RLi, R = Me, Ph) add 
in the exo position to the benzene ligands in 
[RH6C(CO)I4(T~6-C6H6 )] or [{(CO)3Os}3(/2,3-'r/2:~2:-O 2- 
C6H6)] to give anionic cluster complexes with terminal 
1,2,4,5-r/-cyclohexa-l,4-diene [6] or bridging l-5-r/- 
cyclohexadienyl ligands [7] respectively. However, gen- 
uine nucleophilic substitution reactions (SNAr) via 

carbanion addition followed by hydride abstraction have 
so far been restricted to the systems with terminally 
bound arene ligands [7,8]. 
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As a part of our studies of the organometallic/x-arene 
cluster complexes of the type [{(r/-CsHs)Co}3(/x3- 
rl2:r/2:r/2-arene)] (arene=alkyl- ,  alkenylbenzene) 1 
[4,9] we became interested in the electrophilic and 
nucleophilic reactivity of 1. Since, owing to synthetic 
difficulties, only a limited range of essentially non-func- 
tional arenes is available as bridging ligands in 1 [10] 
one of our goals was to introduce chemical functionality 
at the stage of the cluster coordinated arenes. Unfortu- 
nately the complexes 1 turned out to be rather unreac- 
tive [1 lb]. We felt that fluoroarenes should be better 
substrates for nucleophilic substitutions because of the 
much better properties of the fluoride ion as a leaving 
group, and the possible activation of the arene com- 
pared to a hydrogen substituent. However, in earlier 
synthetic attempts the cluster complexes [{(r/- 
CsHs)Co}3(P~3-r/2:r/2:r/2-fluorostyrene)] l a  could only 
be prepared in very low yield. Preferentially, C - H  bond 
activation of the vinyl groups occurred, which led to the 
formation of the ~-alkyne clusters [H2{(rI-CsHs)Co} 3- 
{/x3-r/l:'02:r/l-(fluorophenyl)ethyne}] [12]. Here, we 
now give a preliminary account of the synthesis, molec- 
ular structure and some nucleophilic substitution reac- 
tions of [{(r/-CsHs)Co}3(/x3-rl2:r/2:rl2-p-fluoro-a-meth - 
ylstyrene)] lb. 

2. Results  and discussion 

Reaction of p-fluoro-a-methylstyrene with [(T/- 
CsHs)Co(T/-C6Me6)] [13] in thf at room temperature 
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R 2 R I R 2 
R1 1 o C(H)=CH 2 o-, m-, p-F 

1 b C(Me)=CH 2 p-F 
~'~'4(. C °.,,.'~ ] -~ c °  ~ l c  C(Me)=CH 2 H 

gave complex lb  in about 50% yield [14]. Owing to 
decomposition on attempted chromatography, separa- 
tion from hexamethylbenzene by fractional crystallisa- 
tion from n-hexane at room temperature was very te- 
dious and accompanied by substantial product loss. 
However, for synthetic studies the crude product can be 
used with success. Spectroscopic data [15] for lb  are in 
complete agreement with the molecular structure ob- 
served in the solid state [16] (Fig. 1). As in all struc- 
turally characterised derivatives of 1, a /.Z3-~2:'Q2:T] 2 
coordination geometry of the essentially planar arene 
ligand is attained. The structural features of the/z3-arene 
ligand resemble those previously reported for other 
complexes of this type [1,4,9,11]. In particular, there is 
some alternation of the endocyclic carbon-carbon bond 
lengths, the bonds on top of the cobalt atoms being 
somewhat shorter (mean dcc = 1.418 ,~) than those 
between the cobalt atoms (mean dcc = 1.444 ,~). As 
predicted by theory [ 17] the substituents on the/z3-arene 
are displaced from the ligand plane away from the metal 
cluster (C7 by 0.44 ,~, F1 by 0.55 .A,). A small distortion 
around C 1 which involves the endocyclic carbon-carbon 
and the carbon-cobalt bonds can be attributed to the 
influence of the sterically demanding isopropenyl sub- 
stituent. 

F l ( ~ ,  x C5 C6 ~, CI - ~ J l ~  ~'I'% 

Fig. 1. Molecular structure of lb. Selected bond distances (A) with 
standard deviations in parentheses: CO(1)-CO(2), 2.484(1); Co(1)- 
Co(3), 2.488(1); CO(2)-CO(3), 2.499(1); CO(I)-C(5), 2.027(6); 
CO(I)-C(6), 2.016(5); CO(2)-C(I), 2.060(6); CO(2)-C(2), 2.023(6); 
Co(3)-C(3), 2.029(6); CO(3)-C(4), 1.976(6); C(1)-C(2) 1.434(7); 
C(1)-C(6), 1.465(8); C(2)-C(3), 1.435(8); C(3)-C(4), 1.413(8); 
C(4)-C(5), 1.433(8); C(5)-C(6), 1.407(8); C0)-C(7), 1.481(8); 
c(7)-c(8), 1.488(9); c(7)-c(9), 1.322(10), C(4)-F(I), 1.382(6). 

The NMR spectroscopicproperties of lb  (notably the 
high field shift of the IH, ~3C and 19F resonances of the 
/zs-fluoroarene ligand) are in line with those of related 
derivatives [11,12,18]. In solution a fluxional process 
involving rotation of the arene ligand on top of the 
metal cluster is apparent from the temperature depen- 
dence of the ~H NMR spectra. Low temperature spectra 
are in accord with a static structure with a /z3-r/2:T/2:~? 2 
coordination of the arene. 

After treatment of la with one equivalent of LiHBEt 3, 
followed by chromatographic workup on deactivated 
alumina, the known [l ib] cluster complex [{(r/- 
C5H5)Co}3(/z3-~?2:r/2:~72-a-methylstyrene)] lc was iso- 
lated in 30% yield [19]. Likewise, the para-phenyl-sub- 
stituted derivative ld  was obtained in 34% yield from 
the reaction of la  and phenyl lithium [19]. In an experi- 
ment carried out under identical conditions, no substitu- 
tion was observed when free p-fluoro-a-methylstyrene 
was treated with phenyl lithium. Complex lc shows 
resonances due to an uncomplexed phenyl group in the 
IH and 13C NMR spectra [20], along with the high field 
resonances [ 6 ( I H ) ~  4.5, 6(~3C)= 30-45] typical for 
the /z3-arene moiety. A broadened resonance is ob- 
served for the cyclopentadienyl protons at room temper- 
ature. This signal sharpens on warming of the sample to 
330 K and splits into a poorly resolved 2:1 pattern on 
cooling to 250 K, in accord with a hindered rotation of 
the arene relative to the tricobalt cluster. The 19F spec- 
trum is silent. 

Substitution of halide by carbanions was reported 
previously for chromium tricarbonyl complexes of 
halobenzenes [21a]. In these cases the nucleophile re- 
versibly adds to the r/-arene at each of the ring carbons 
(probably except para to the halogen) in the first step 
under kinetic control. However, elimination of halide 
occurs from the ipso addition product only, resulting in 
purely ipso substitution [21b]. We presume a similar 
mechanism for the SNAr reactions of the /z3-fluoro- 
arene in lb. Our results indicate that the enhancement 
of nucleophilicity, imposed to the /z3-arene by the 
[(r/-CsHs)Co] 3 cluster, is considerably less than that 
caused by second- and third-row metal carbonyl clus- 
ters. This may be taken as a reflection of the better 
electron withdrawing capabilities of the metal carbonyl 
fragments. In addition, the presence of good fluoride 
acceptors (BEt 3 and Li ÷) is expected to enhance the 
ease of the reaction in the former case. 
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